Жанр: Научно-образовательная: Прочее » Эрик Дрекслер » Машины создания (страница 2)


ЧАСТЬ ПЕРВАЯ. ОСНОВЫ ПРЕДВИДЕНИЯ


Глава 1. МАШИНЫ СТРОИТЕЛЬСТВА

Конструирование белка … представляет первый существенный шаг к более общей возможности молекулярного конструирования, которая позволила бы нам структурировать материю атом за атомом.

КЕВИН АЛМЕР, директор по перспективным исследованиям корпорации Genex


Два стиля технологии

Молекулярная технология сегодня

Существующие белковые машины

Конструирование с помощью белков

Второе поколение нанотехнологии

Универсальные Ассемблеры

Какие будут выводы?

Нанокомпьютеры

Дизассемблеры

Обновлённый мир



УГОЛЬ И АЛМАЗЫ, песок и чипы компьютера, рак и здоровая ткань: на всём протяжении истории, вариации в упорядочении атомов различили дешевое от драгоценного, больное от здорового. Упорядоченные одним образом, атомы составляют почву, воздух и воду; упорядоченные другим, они составляют спелую землянику. Упорядоченные одним образом, они образуют дома и свежий воздух; упорядоченные другим, они образуют золу и дым.

Наша способность упорядочивать атомы лежит в основе технологии. Мы ушли далеко в своей способности упорядочивать атомы, от заточки кремня для наконечников стрел обработки алюминия для космических кораблей. Мы гордимся нашей технологией, с нашими лекарствами, спасающими жизнь, и настольными компьютерами. Однако наши космические корабли всё ещё грубы, наши компьютеры пока ещё глупые, а молекулы в наших тканях всё ещё постепенно приходят в беспорядок, вначале разрушая здоровье, а затем и саму жизнь. При всех наших успехах в упорядочении атомов мы всё ещё используем примитивные методы упорядочения. При нашей имеющейся технологии мы всё ещё вынуждены манипулировать большими плохо управляемыми группами атомов.

Но законы природы дают много возможности для прогресса, и давление мировой конкуренции даже теперь толкает нас вперед. Хорошо это или плохо, но самое большое технологическое достижение в истории всё ещё нас ожидает впереди.

Два Стиля Технологии

Наша современная технология основывается на древней традиции. Тридцать тысяч лет назад обтёсывание камня было на тот день высокой технологией. Наши предки брали камни, содержащие триллионы триллионов атомов и удаляли слои, содержащие миллиарды триллионов атомов, чтобы сделать их них наконечники для стрел. Они делали прекрасную работу с мастерством, трудновоспроизводимым сегодня. Также они делали рисунки на стенах пещер во Франции распылением краски, используя свои руки и трафареты. Позже они делали горшки обжиганием глины, потом – бронзу, обжигая породу. Они придавали бронзе форму, выковывая её. Они делали железо, потом сталь, и придавали им форму, нагревая, выковывая и снимая стружку.

Мы теперь готовим чистую керамику и более прочные стали, но мы все еще придаём им форму с помощью выковывания, снятия стружки и т.п. Мы готовим чистый кремний, пилим их в пластины, и делать рисунок на поверхности, используя крошечные трафареты и пучки света. Мы вызываем(называем) изделия "чипами" и мы считаем, что они удивительно малы, по крайней мере в сравнении с наконечниками стрел.

Наша микроэлектронная технология сумела загнать машины, столь же мощные как компьютеры размера комнаты в начале 1950-ых в несколько кремниевых чипов в карманном компьютере. Инженеры теперь делают устройства меньшие, чем когда-либо, раскидывая группы атомов по поверхности кристалла так, чтобы образовывались связи и компоненты в одну десятую толщины тончайшего волоса.

Эти микросхемы могут считаться маленькими в стандартах тесальщиков кремня, но каждый транзистор все еще содержит триллионы атомов, и так называемые "микрокомпьютеры" все еще видимы к невооружённому глазу. По стандартам более новой, более мощной технологии они будут выглядеть гигантскими.

Древний стиль технологии, который можно проследить от чипов кремня до кремниевых чипов, обращается с атомами и молекулами большими совокупностями; назовём это балк-технологией (bulk – оптовый). Новая технология будет манипулировать индивидуальными атомами и молекулами под контролем и прецизионно; назовём её молекулярной технологией. Она изменит наш мир в большем количестве областей, чем мы можем вообразить.

Микросхемы имеют части, измеряемые в микрометрах – то есть в миллионных долях метра, но молекулы измеряются в нанометрах (в тысячу раз меньше). Мы можем использовать термины "нанотехнология" и "молекулярная технология" взаимозаменяемо для описания нового вида технологии. Разработчики новой технологии будут строить и наносхемы, и наномашины.

Молекулярная технология сегодня

Одно из определений машины по словарю – "любая система, обычно из твердых частей, сформированных и связанных так, чтобы изменять, передавать, и направлять используемые силы определенным способом для достижения определенной цели, такой как выполнение полезной работы." Молекулярные машины подходят под это определение вполне хорошо.

Чтобы представить себе эти машины, нужно сначала дать наглядное представление о молекулах. Мы можем изобразить атомы как бусинки, а молекулы как группы бусинок, подобно детским бусам, соединённым кусочками нитки. На самом деле, химики иногда представляют молекулы наглядно, строя модели из пластмассовых бусинок (некоторые из которых связаны в нескольких направлениях чем-то

подобным спицам в наборе Tinkertoy). Атомы имеют круглую форму подобно бусинам, и хотя молекулярные связи – не кусочки нитки, наша картинка как минимум даёт важное представление, что связи могут быть порваны и восстановлены.

Если атом был бы размером маленького мраморного шарика, довольно сложная молекула была бы размером с кулак. Это даёт полезный мысленный образ, но на самом деле атомы около 1/10.000 размера бактерии, а бактерия – около 1/10.000 размера комара. (Ядро атома, однако, составляет около 1/100.000 размера самого атома; разница между атомом и ядром – это разница между огнем и ядерной реакцией.)

Вещи вокруг нас действуют, как они действуют, из-за того, как ведут себя их молекулы. Воздух не держит ни форму, ни объем, потому что молекулы двигаются свободно, сталкиваясь и отскакивая рикошетом в открытом пространстве. Молекулы воды держатся вместе в процессе перемещения, поэтому вода сохраняет постоянный объём в процессе изменения своей формы. Медь сохраняет свою форму потому что её атомы связаны друг с другом в определённую структуру; мы можем согнуть её или ковать её, потому что её атомы скользят друг относительно друга, оставаясь при этом связанными вместе. Стекло разбивается, когда мы ударяем по нему молотком, потому что его атомы отделяются друг от друга раньше, чем начинают скользить. Резина состоит из цепочек перекрученных молекул, подобно клубку веревок. Когда её растягивают и отпускают, её молекулы распрямляются и сворачиваются опять. Эти простые молекулярные схемы образуют пассивные вещества. Более сложные схемы образуют активные наномашины живых клеток.

Биохимики уже работают с этими машинами, которые в основном состоят из белка, основной строительный материал живых клеток. Эти молекулярные машины имеют относительно немного атомов, и так что они имеют бугорчатую поверхность, подобно объектам, сделанным склеиванием вместе горстки мраморных шариков. Также многие пары атомов связаны связями, которые могут сгибаться и вращаться, поэтому белковые машины необычно гибки. Но подобно всем машинам, они имеют части различной формы и размеров, которые выполняют полезную работу. Все машины используют группы атомов в качестве своих частей. Просто белковые машины используют очень маленькие группы.

Биохимики мечтают о проектировании и создании таких устройств, но есть трудности, которые ещё необходимо преодолеть. Инженеры используют лучи света, чтобы наносить схемы на кремниевые чипы, но химики вынуждены использовать намного более косвенные методы, чем этот. Когда они комбинируют молекулы в различных последовательностях, у них есть только ограненный контроль над тем, как молекулы соединяются. Когда биохимикам нужны сложные молекулярные машины , они все еще должны заимствовать их из клеток. Однако, продвинутые молекулярные машины в конечном счете позволят им строить наносхемы или наномашины также просто и непосредственно, как сейчас инженеры строят микросхемы и моечные машины. После этого прогресс станет впечатляюще стремительным.

Генные инженеры уже показывают путь. Обычно, когда химики делают молекулярные цепи, называемые "полимерами" – они сваливают молекулы в сосуд, где они в жидкости сталкиваются и связываются случайным образом. Появляющиеся в результате цепи имеют различные длины, а молекулы связываются без какого-либо определённого порядка.

Но в современных машинах генного синтеза, генные инженеры строят более организованные полимеры – специфические молекулы ДНК, соединяя молекулы в определённом порядке. Эти молекулы – нуклеотиды ДНК (буквы генетического алфавита) и генные инженеры не сваливают их все вместе. Вместо этого они заставляют машины добавлять различные нуклеотиды в определённой последовательности, чтобы составить определённую фразу. Вначале они связывают один тип нуклеотидов с концом цепи, потом они вымывают лишний материал и добавляют химические вещества, чтобы подготовить конец цепи к связыванию со следующим нуклеотидом. Они растят цепи, нанизывая нуклеотиды по одному за раз в запрограммированном порядке. Они прицепляют самый первый нуклеотид в каждой цепи к твёрдой поверхности, чтобы удержать цепь от размывания химической средой, в которой она находится. Таким образом, они заставляют большую неуклюжую машину собирать определённые молекулярные структуры из частей, которые в сотни миллионов раз меньше, чем она сама.

Но этот слепой процесс сборки случайно пропускает в некоторых цепях нуклеотиды. Вероятность ошибок растет, поскольку цепи становятся более длинными. Подобно рабочим, откладывающим в сторону плохие части перед сборкой автомобиля, генные инженеры уменьшают ошибки, отбраковывая плохие цепи. Далее, чтобы соединить эти короткие цепи в работающие гены (обычно длиной в тысячи нуклеотидов), они обращаются к молекулярным машинам, имеющимся в бактериях.

Эти белковые машины, называемые ферментами ограничения, интерпретируют некоторые последовательности ДНК как "резать здесь." Они считывают эти участки гена контактно, прилипая к ним, и они разрезают цепь, меняя порядок нескольких атомов. Другие ферменты соединяют части вместе, "читая" соответствующие части как "склеить здесь", аналогично "читают" цепи выборочным прилипанием и соединяют их, изменяя порядок нескольких атомов. Используя генные машины для чтения, а ферменты ограничения для разрезания и склеивания, генные инженеры могут написать и отредактировать любую фразу ДНК, которую захотят.



Ознакомительный фрагмент книги закончился.
Чтобы прочитать или скачать всю книгу
перейдите на сайт партнера.

Перейти и скачать