Жанр: Научно-образовательная: Прочее » Эрик Дрекслер » Машины создания (страница 40)


Границы аппаратных средств

Действительно ли молекулярные машины – конец на пути миниатюризации? Идея, что молекулярные машины могли бы стать шагом на пути ещё более маленьких "ядерных машин" кажется достаточно естественной. Один молодой человек (студент последнего курса по экономике в Колумбийском университете) слышал о молекулярной технологии и её способности манипулировать атомами и сразу заключил, что молекулярная технология могла бы делать всё что угодно, даже разлагать ядерные бомбы на безопасные свинцовые кирпичики на расстоянии.

Молекулярная технология не может делать ничего подобного. Превращение плутония в свинец (будь то на расстоянии или нет) находится вне возможностей молекулярной технологии по той же причине, что и превращение свинца в золото лежит вне возможностей алхимии. Молекулярные силы имеют мало влияния на ядра атомов. Атомы содержат в себе более 99,9 процентов атомной массы и занимают около 1/1.000.000.000.000.000 его объёма. В сравнении с ядром, остальная часть атома (электронное облако) меньше, чем пушинка. Пытаться изменить ядро, тыкая в него молекулой – это даже более бесполезно, чем пытаться расплющить стальной шарик от подшипника, тыкая в него шаром воздушной сахарной ваты. Молекулярная технология может сортировать и переупорядочивать атомы, но она не может достичь ядра, чтобы изменить тип атома.

Наномашины не могут быть полезны в построении машин размером ядра, даже если они могли бы существовать. Очевидно они не могут, по крайней мере при условиях, которые мы можем создать в лаборатории. Машины должны иметь некоторое число частей в близком контакте, но плотно упакованные ядра яростно отталкивают друг друга. Когда расщеплялись ядра при взрыве Хиросимы, большая часть энергии высвободилась из-за свирепого электростатического отталкивания только что расщеплённых половинок. Хорошо известная трудность слияния ядер происходит из той же самой проблемы отталкивания ядер.

В добавок к расщеплению или слиянию, ядра можно заставить испускать или поглощать различные типы излучения. В одном из методов их заставляют двигаться по спирали так, чтобы получать полезную информацию, позволяя докторам делать медицинские изображения, основанные на ядерном магнитном резонансе. Но все эти явления опираются только на свойства хорошо разделённых ядер. Изолированное ядро слишком просто, чтобы действовать как машина или электронная схема. Ядра можно заставить сблизиться, но только при громадном давлении, которое обнаруживается внутри коллапсирующих звёзд. Занятия конструированием в таких условиях представляло бы существенные трудности, даже если коллапсирующая звезда была бы у нас в руках.

Это возвращает нас к основному вопросу: что мы можем сделать, нужным образом упорядочивая атомы? Некоторые пределы уже кажутся понятными. Самый прочный возможный материал будет иметь грубо в десять раз больше прочность, чем сегодняшний самый прочный стальной провод. (Самый прочный материал для изготовления кабелей, по-видимому – карбин, форма углерода, имеющая атомы, упорядоченные в прямые цепочки.) Представляется, что тепловые вибрации при обычных давлениях будут разрывать самые прочные твёрдые материалы при температурах около четырёх тысяч градусов Цельсия (примерно на полторы тысячи градусов прохладнее, чем на поверхности Солнца).

Эти грубые свойства материи – прочность и жароустойчивость не могут быть существенно улучшены посредством сложного, умно устроенного упорядочивания атомов. Кажется вероятным, что наилучшие структуры будут достаточно простые и правильные. Другие довольно простые цели включают передачу тепла, изоляцию от тепла, передачу электрического тока, электрическую изоляцию, передачу света, отражение света и поглощение света.

Для некоторых целей, погоня за совершенством приведёт к простым структурам; для других она приведёт к конструкционным проблемам, которые нет никакой надежды разрешить. Разработка наилучшего возможного переключающего компонента для компьютера может оказаться достаточно простой; разработка наилучшего возможного компьютера будет намного более сложной. В действительности, то, что мы рассматриваем как "наилучшее возможное" будет зависеть от многих факторов, включая стоимость материи, энергии и времени – и от того, что мы собираемся вычислять. В любом конструкторском проекте, то, что мы называем "лучшим" зависит от бесконечно многих факторов, включая плохо определяемые и постоянно меняющиеся человеческие потребности. Что более важно, даже когда "лучшее" определено, стоимость поиска последнего прироста в улучшении, которое отделяет наилучшее от просто отличного может не стоить своей цены. Однако мы можем игнорировать все такие вопросы, как сложность и стоимость разработки, когда рассматриваем, действительно ли существуют пределы.

Чтобы определить предел, нужно выбрать направление, шкалу качества. Если двигаться по какому-то направлению, в сторону, определённую как "лучше", то обязательно будет что-то "наилучшее". Структура упорядочивания атомов определяет свойства аппаратных средств, а согласно квантовой механике, множество возможных способов упорядочивания конечно – более чем астрономически огромно, но не бесконечно. Математически следует, что при ясной цели, некоторое одно из этих способов упорядочивания должно быть наилучшим, или близким к нему. Как в шахматах, ограниченное число фигур и ходов ограничивает способы упорядочивания и, значит, возможности. Однако и в шахматах, и в конструировании, множество возможного в этих пределах неисчерпаемо.

Знать лишь фундаментальные законы материи не достаточно, чтобы сказать

точно, где лежат все пределы. Мы кроме того должны встретиться со сложностями конструирования. Наше знание о некоторых ограничениях остаётся в больших пределах: "Мы знаем только то, что предел лежит между этой точкой (несколько шагов вперёд) и той (пятнышко где-то у линии горизонта)". Ассемблеры откроют путь к пределам, где бы они ни были, а системы автоматического инжиниринга ускорят прогресс по пути к этому. Абсолютное совершенство часто оказывает неуловимым, но бегущие вверх часто оказываются почти около него.

По мере того, как мы будем продвигаться к действительным пределам, наши способности будут во всё больших областях технологии прекращать расти. Продвижения в этих областях остановятся не просто на десятилетие или век, но насовсем.

Некоторые могут игнорировать слово "насовсем", думая "Никаких улучшений за тысячу лет? За миллион лет? Это должно быть переоценкой." Однако там, где мы достигнем настоящих физических пределов, мы дальше не пойдём. Правила игры встроены в структуру вакуума, в структуру вселенной. Никакое переупорядочивание атомов, никакое сталкивание частиц, никакое законодательство или пение хоралов не сдвинут естественные законы ни на йоту. Мы можем неправильно оценивать пределы сегодня, но где бы пределы ни были, там они и останутся.

Этот взгляд на естественные законы показывает пределы качеству вещей. Но мы также сталкиваемся с пределами количеству, устанавливаемому не только естественными законами, но тем, как материя и энергия упорядочена во вселенной, как нам удаётся её обнаруживать. Автор книги "Пределы росту", также как и многие другие, пытался описать эти пределы, не исследуя прежде пределы технологии. Это дало результаты, вводящие в заблуждение.

Энтропия: предел использованию энергии

Не так давно многие авторы описывали накопление отработанного тепла и хаос как то, к чему ведёт человеческая деятельность. В книге "Годы бедности – политика в век скудных ресурсов", Ричард Барнет пишет:

В этом есть ирония, что повторное открытие границ совпадает с двумя самыми дерзкими технологическими подвигами в человеческой истории. Один из них – генетическая инженерия, неожиданный проблеск способности изменять форму самого вещества жизни. Другой – выход в космос. Эти прорывы подтолкнули фантазии на тему возможностей, но они не сломали экологическую смирительную рубашку, известную как второй закон термодинамики: большее потребление энергии производит большее количество тепла, которое никогда не исчезает, а должно считаться необратимыми затратами энергии. Так как накопление тепла может вызвать экологическую катастрофу, эти издержки ограничивают продвижение человека в космосе, равно как и на земле."

Джереми Ривкин (с Тедом Ховардом) написали целую книгу по организациям термодинамики и будущего человечества, озаглавленную "Энтропия: новый взгляд на мир".

Энтропия – стандартная научная мера расхода тепла и беспорядка. Везде, где деятельность потребляет полезную энергию, она производит энтропию; энтропия мира следовательно увеличивается постоянно и необратимо. В конце концов рассеяние полезной энергии разрушит основу жизни. Как сказал Ривкин, эта идея может казаться слишком угнетающей, чтобы о ней думать, но он доказывает, что мы должны встретить лицом к лицу ужасные факты относительно энтропии, человечества и Земли. Но так ли ужасны эти факты?

Барнет пишет, что аккумулирующееся тепло – необратимый расход энергии, ограничивающий человеческое действие. Ривкин утверждает, что "загрязнение – это суммарный итог всей доступной энергии в мире, которая превращена в недоступную энергию." Эта недоступная энергия – главным образом низкотемпературный расход тепла, что-то вроде того, который заставляет нагреваться телевизор. Но действительно ли тепло аккумулируется, как этого боится Барнет? Если так, тогда Земля должна становиться всё более горячей, минута за минутой, год за годом. Мы сейчас должны изжариться, если бы наши предки не были заморожены. Однако каким-то образом материки умудряются сохраняться холодными ночью и ещё более холодными в течение зимы. Во время ледникового периода, охладилась вся Земля.

Ривкин делает другой ход. Он заявляет, что "фиксированный запас земной материи, который составляет земную кору, постоянно рассеивается. Горы разрушаются и верхний слой почвы выдувается с каждой проходящей секундой." Но под "выдуванием" Ривкин не имеет в виду выдувание в космос или выдувание в небытие; он просто имеет в виду, что атомы гор смешиваются вместе с другими. Однако этот процесс, он доказывает, означает нашу обречённость. Смешивающиеся атомы делают их "недоступной материей", как следствие "четвёртого закона термодинамики", предложенным экономистом Николасом Джорджску-Роугеном: "В закрытой системе, материальная энтропия должна в конце концов достичь максимума", или, что то же самое: "недоступная материя не может быть утилизирована". Ривкин провозглашает, что Земля – закрытая система, обменивающаяся энергией, но не материей с её окружением, и следовательно "здесь на земле материальная энтропия постоянно увеличивается и должна в конце концов достичь максимума", заставляя земную жизнь захиреть и погибнуть.



Ознакомительный фрагмент книги закончился.
Чтобы прочитать или скачать всю книгу
перейдите на сайт партнера.

Перейти и скачать